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Abstract

Protocol synthesis is used to derive a protocol specification, that is, the specification of a set of
application components running in a distributed system of networked computers, from a specification
of services (called the service specification) to be provided by the distributed application to its users.
Protocol synthesis reduces design costs and errors by specifying the message exchanges between the
application components, as defined by the protocol specifications. In this paper, we propose a new
synthesis method that generates optimized protocol specification. Both service and protocol specifica-
tions are described using extended Petri nets. Particularly, we propose two integer linear programming
models that derive distributed applications with minimum communication costs. The first model de-
termines an optimal allocation of resouces that minimizes communication costs and the second model
minimizes the communication costs based on a given fixed allocation of resources. Moreover, our
models can treat several reasonable cost criteria that could be used in various related application ar-
eas. Particularly, we have considered the following cost criteria:(a) the number of messages exchanged
between different distributed applications, (b) the size of messages, (c) the number of messages based
on frequency of executions,(d) communication channel costs, and (e) resource placement costs. An

application example is given along with some experimental results.
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1 Introduction

Protocol synthesis is used to derive a protocol specification, that is, the specification of a set of application
components running in a distributed system of networked computers, from a specification of services (called
the service specification) to be provided by the distributed application to its users. The service specification
is written as a program of a centralized system, and does not contain any message exchange between
different physical locations. However, the implementation level’s specification of the cooperating programs,
called protocol entities (PE’s), includes the message exchanges between these entities. Therefore, protocol
synthesis methods have been used to specify and derive such complex message exchanges automatically
in order to reduce the design costs and errors that may occur when manual methods are used.

There are a number of aspects to protocol synthesis that have been addressed in the literature. The
aspect deals with implementing complex control-flows using different computational models such as CCS

based models [6, 7], LOTOS [9, 10], Petri nets [15, 16, 19] and FSM/EFSM [11, 13]. The second aspect,



[20, 21, 22, 24, 25, 26], deals with satisfying the timing constraints specified by a given service specification
in the derived protocol specification. This is important for real-time distributed systems.

The last aspect, [28, 27, 8, 12, 17, 18, 23], deals with the management of distributed resources such as
files and databases. The objective is to determine how these distributed resources are read and updated
by the different PE’s in the context of a given resource allocation.

Some methods related to the last aspect, especially in our previous research work [28, 12, 17], consider
a given service specification and derive a corresponding protocol specification assuming a given fixed
resource allocation. However, in the context of distributed applications,there may be a large number of
possible resource allocation, and their choice may have an important impact on the performance of the
resulting system. It is therefore desirable to find an optimized resource allocation and protocol.

As an example, we considered a software development process using a Computer Supported Cooperative
Work (CSCW) environment. This process is carried out cooperatively by multiple engineers (developers,
designers, managers and others). Each engineer has his/her own workstation (PE) and participates in the
development process using specific distributed resources (e.g. drafts, source codes, object codes,multimedia
video and audio files, and others) which may be placed on different computers. Considering the need
for managing such a process in the distributed environment, we describe the whole software development
process (service specification) and derive the set of all the engineers’ sub-processes (protocol specification).
We also determine an optimal allocation of resources that would minimize the communication costs (such
as file transfer costs).

In this paper, we extend our synthesis method presented in [28] and propose a new synthesis method
that derives optimized distributed applications. Both service and protocol specifications are described
using extended Petri nets. Particularly, based on a set of rules [28] for deriving a protocol specification,
we formulate two Integer Linear Programming (ILP) models that minimize the communication costs of the
protocol specification. The first model (henceforth denote as the resource-allocation model) determines

an optimal allocation of resources that minimizes the communication costs and the second model (hence-



forth denoted as the fized-allocation model) minimizes the communications costs based on a given fixed
allocation of resources. Our ILP models can also treat several other reasonable cost criteria that could be
used in various application areas for deriving protocol specifications. Particularly, we have considered the
following cost criteria: (a) the number of messages to be exchanged between different PE’s, (b) the size
of messages to be exchanged between different PE’s, (c) the number of messages based on frequency of
executions, (d) communication channel costs, and (e) resource placement costs.

For a given cost function, based on the solution provided by an ILP model, our synthesis algorithm
determines how, when, and which entities should send messages in order to obtain optimized distributed
applications.

This paper is organized as follows. Section 2 gives examples of service specifications and protocol
specifications. Section 3 provides an overview of our protocol synthesis method. Based on this method,
we present in Section 4 a formulation of the two integer linear programming models that can be used to
derive distributed applications with minimum communication costs. Moreover, in Section 5 we discuss
the related communication cost criteria. In Section 6 we give an application example, and in Section 7 we

conclude this paper and include our insights for future research.

2 Service Specifications and Protocol Specifications

2.1 Petri Net Model with Registers

We use an extended Petri net model called Petri Net with Registers (PNR in short) [17, 28] to describe
both service specifications and protocol specifications of distributed systems. In this model, the service
access points between the users and the system are modeled as gates, and the variables used inside the
system, such as databases and files, are modeled as registers. Each transition ¢ in a PN R has a label
(C(t),£(t),S(t)), where C(t) is a pre-condition (the firing condition of ¢), £(¢) is an I/O event and S(t) is
a set of assignment statements (which represent parallel updates of register values).

A transition ¢ may fire if (a) each of its input places has a token, (b) the value of C(t) is true and (c)

an input value is given through the gate in £(¢) if £(¢) is an input event. If ¢ fires, the corresponding I/O
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Figure 1: Register Values and Token Location before and after Firing Transition in PNR

event is executed, and the new values of registers are calculated and substituted in parallel as defined by
S(t).

Consider, for example, transition ¢ of Fig. 1(a) where C(t) =“i > R”, £(t) =“G?i” and S(t) =“{R «+
R'+i,R' < R+ R +i}”. Here, i denotes an input variable which holds an input value. The input value
can be referred to only in this transition ¢. R and R’ denote registers which contain values, and their
values may be used and updated by all the transitions of the PN R. This means that registers are treated
like global variables. G is a gate, that is, a service access point (interaction point) between users and the
system. Note that “?” or “I” in £(t) indicate that £(t) is an input or output event, respectively.

Assume that an integer of value 3 has been given as input through gate GG, and the current values of
the registers R and R’ are 1 and 2, respectively. In this case, since the value of the pre-condition “i > R”
is true, the transition may fire. If it fires, event “G7i” is executed and the input value 3 is assigned to
the input variable 7. Then the assignments “R < R’ +i” and “R' « R+ R’ +1i” are executed in parallel.
After the firing, the tokens are moved, and the values of the registers R and R’ are 5 (= 2 + 3) and 6
(= 1+ 2+ 3), respectively (Fig. 1(b)).

Formally, an I/O event £(t) is one of the following types: “G lexp”, “G ?i”, or “r”7. “G lexp” is an

output event, and it means that the value of the expression “exp” is output through the gate G (all the



arguments in “exp” must be registers). “G 7¢” is an input event and it means that the value given through
G is assigned to the input variable “i”. The event “7” means that no external I/O event is associated
with this transition. S(¢) is a set of assignment statements, each of which has the form “R «+ exp” where
R is a register and exp is an expression whose arguments may be the input variable of £(t) or registers.
PNR is defined as a tuple (T, P, A, My,G,R,1,C,E,S, Ry) where (T, P, A, My) is a Petri net, G is a

set of gates, R is a set of registers, and I is a set of input variables. C, £ and S define the labels of

transitions as explained above, and Ry defines the initial values of the registers.
2.2 Service Specifications

At an abstract level, a distributed system is regarded as a non-distributed system which provides services
as a single “virtual” machine. The number of actual PE’s and communication channels between them are
hidden. A specification of a distributed system at this level is called a service specification and denoted
by Sspec in this paper. Although the actual resources of a distributed system may be located on different
physical machines, called protocol entities, the service specification, at this level, considers only one virtual
machine.

For better readability and understanding, hereafter, we use the simple example of Sspec shown in Fig.
2(a). A larger practical example is given in Section 6. Sspec in Fig. 2(a) uses two gates Gy, and Gout
and two registers R and R'. At the initial marking, one token is assigned to place P;, and therefore T}
can fire if an input is given through G;,. When T} fires, the system updates the values of the registers
R and R’ simultaneously using the current values of register R’ and the input i, respectively!. Then T
fires, and the system outputs the updated values of R and R’ through gate G, and returns to the initial

marking.
2.3 Protocol Specifications

A distributed system may be considered as a communication system which consists of n protocol entities

PE,, PE,, ... and PE,. We assume a duplex and reliable communication channel between any pair of

LAt the first firing of T}, the initial value of R’ is used to update R.



PE’s (PE; and PEj). The PE; and PE; sides of the communication channel are represented as gates g;;
and g;;, respectively. Moreover, we assume that all the registers and the gates for communication with
the users are allocated to certain PE’s in the distributed system.

Two PE’s communicate with each other asynchronously by exchanging messages. A message is denoted
by “M/list of values]” where “M” is one of the following three message types (a, 3 or 7) explained later.
We assume that if PE; executes an output event “g;;!M|[list of values]” on a transition, this message is
sent through gate g;; to the peer protocol entity PE;. On reception, it is written into PEj’s receive buffer.
If PE; executes an input event “g;;?w” with pre-condition “ID(w) == M” on a transition, PE; removes
the received message from its buffer and the message is kept in the input variable w. Note that the i-th
value of the list included in the received message w will be denoted by #i(w).

In order to implement a distributed system which consists of n PE’s, we must specify the behavior
of these PE’s. A behavior specification of PE}, is called a protocol entity specification and denoted by
Pspecy,. A set of n protocol entity specifications is called a protocol specification and denoted as Pspecy. .
We need a protocol specification in order to implement a given service specification.

Let us assume that there are two PE’s (PE; and PE>) in order to implement the service specification
of Fig. 2(a). We also assume that PE; has both user gates G;, and G, and register R, while PE» has
register R'. Fig. 2(b) shows an example of Pspec; » which provides the services of Fig. 2(a), based on
the above allocation of resources. Note that some additional registers, called temporary registers, are used
in this protocol specification to temporary keep values received in messages. If PFE; receives the value
of register R from some other PE via a message, we assume a temporary register “_R” (represented as
a dotted box in the figure) to keep the value on PE;. In Fig. 2(b), for simplicity of notations, both g2
and go; are denoted as g, and internal events “7”, pre-conditions “true” and empty sets of assignment
statements are omitted.

According to the protocol specification of Fig. 2(b) and its corresponding timing charts in Fig. 3, PE;

first receives an input through G;, and checks the values of the firing condition C(7}) on ¢;,. Since it is
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always true, PE; executes £(T}) on t1, and keeps the received input 7 in the temporary register i. Then
it sends a message “a” during transition #;; in order to ask PFE> to send the current value of R’ which is
necessary to update the value of R. PFE5 receives the message during transition ¢1; and sends a message
“B[R']” during transition t,;. PE; receives the message during ¢;. and now knows the value of R'. In
parallel with the sending of the a-message, PE; sends the message “3[-i]” during t14 thereby sending the

“” to PE>. PEs receives the message during ¢1; and now knows the value of the input.

value of the input
After sending/receiving the S-messages, PE; and PE, know that now they can execute S(77) using the
received values. They independently execute “R < R'” and “R’' < i” during the transitions ti, and #;,
respectively. After the firing of ¢;, and ty;, the system is in a state where the service specification should
check whether transition 75 would be executed. For that purpose, PE> sends a message “y[R']” in order
to send the (updated) value of R' and let PE; know that the execution of “R’ < ¢” had been completed.
When receiving the y-message, PE; is ready to start the execution of Ts. After executing £(T>) on ta,,
both PE; and PE, are back in their initial markings.

As shown in the above example, two PE’s cooperate with each other in order to provide the same event
sequences (including values) at the user gates G, and G,y as specified in Sspec. Moreover, our synthesis
method described below guarantees that the values of a register in Sspec and Pspec;. o are identical and
the buffers of all the communication channels are empty at corresponding markings. For example, the
marking of Sspec where place P> has a token and the marking of Pspec; > where place P; of PE; and
place “P; + Py” of PE; have tokens are such corresponding markings. This is because our implementation
never starts the execution of a transition unless the execution of all the previous transitions have been
completed, and it allows us to easily keep consistency between Sspec and Pspec;. . It also allows us to
use receive buffers of finite capacity for the communication channels, since we can determine the maximum

number of messages that may be in transmit between any pair of protocol entities.
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Figure 4: Applying Synthesis Rules to T}

3 Synthesis Overview

We have presented in our previous work, especially in [28], the protocol synthesis method which is the
basis for and thus highly relevant to the ILP model for optimal resource allocation presented in this paper.
In order for the complete understanding of this model with the conviction of correctness, it is important
to present our synthesis method designed to be suitable to the model.

The synthesis method derives a protocol specification from a given service specification and is based on
a set of synthesis rules that specify how to execute each transition T = (C(T),E(T),S(T)) of the service
specification by the corresponding PE’s in the protocol specification. Based on these rules, the behavior
of all PE’s and an optimal allocation of resources (registers and user gates) for minimum communication
costs is determined. This leads to the specifications of all the PE’s (protocol entity specifications) written

in the same PNR model formalism.
3.1 Synthesis Rules

For executing a transition T' = (C(T),E(T),S(T)) of the service specification by a set of transitions of

the PE’s in the protocol specification, we use the following algorithm. Fig. 4 shows how our algorithm is
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Table 1: Notation

Notation

C(T), E(T), S(T) pre-condition, event and set of assignment statements of T

PEstart(T) the PE where the gate used in £(T') is located

PEsubst(T) the set of those PE’s that contain a register updated by S(T")

PEstart(T e o) the set of the PE’s that start the execution of the next transitions after T'
(i-e. Upicree PEstart(T') where T o @ is the set of the next transitions
after T)

applied to transition T} of Sspec of Fig. 2(a). Note that the notation used in the following algorithm is

summarized in Table 1.

e The PE that has the gate G used in £(T') (which we denote by PEstart(T)) decides to start the
execution of T by checking the value of the pre-condition C(T). If it is true, PEstart(T) executes
the event £(T).

In Fig. 4, PEstart(Ty) is PE, since PE; has gate G;,. PE; checks the value of C(T})="“true”

—

(always true) and then executes £(T1)=“G;,71".

e Then, PEstart(T) sends synchronization messages called a-messages to those PE’s that have the
registers used to execute the assignment statements in S(T'). On reception, those PE’s send the
register values to the PE’s that execute assignment statements whose expressions require those

register values. Note that a-messages are also sent to some other PE’s. This is explained later.

In Fig. 4, we assume that “R «+ R'” and “R’ + i” are executed by PE; and PFE, respectively,
since PE; has R and PFE> has R’ (see Section 4 for the discussion of this allocation problem). For
this execution, PE; needs the value of R’ and PE> needs the value of ¢. Here, since PE; does
not have “R'”, the value must be sent from PE,. An a-message is sent from PFEstart(T;) = PE,
to PE> in order to let PE5 send the value of R'. Also, since PEs does not know the value of 4,
it must be sent from PE; to PE,. Here, since PE; is itself PEstart(T}), it knows the timing
to send the value of “i” (just after the execution of £(77)). Therefore no a-message is sent from

PE; to itself.

11



e On the reception of an a-message, the PE sends the values of registers to those PE’s that need
those values for the execution of part of assignment statements in S(T") (the set of these PE’s is
denoted as PEsubst(T)). These messages are called 5-messages. Using those register values, each
PE in PEsubst(T') executes the assignment statements. Note that if a PE in PEsubst(T) does not
need any register value for the execution of the assignment statements, PEstart(T) directly sends

a (-message to the PE in order to know that it can start executing its assignment statements.

In the example of Fig. 4, we have PEsubst(T,) = {PE,, PE>} since PE; has register R and PE»
has R'. PE; sends a (-message to PFEy with the value of 7, which is used by PFE> to execute
“R' + i”. Moreover, PE> sends a 3-message to PFE; with the value of R’, which is used by PE;

to execute “R < R'”. Then PFE; and PFE; execute “R < R'” and “R' < 1", respectively.

e After all assignment statements in S(T") are executed, each PE in PEsubst(T) sends so-called -
messages to those PE’s that will start the execution of the next transitions. The set of those PE’s
is denoted as PFEstart(T ee). These messages confirm the completion of the assignment statements
and also contain the values of registers necessary to start the execution of next transitions. Note
that the PE’s that do not belong to PEsubst(T) may also need to send some values of registers to
the PE’s in PEstart(T o o). These values are also sent as y-messages. In this case, a-messsages are

sent to these PE’s to initiate the sending of y-messages.

In our example, PFE» sends a y-message to PEstart(T, ee) = {PE,}. PE; then knows the value

of R’ and the fact that the execution of S(T}) on PE> has been completed.

The above algorithm is presented as a set of rules called synthesis rules (see Figure 5). These rules
are classified into action rules and message rules. The action rules specify which PE’s should check the
pre-condition, execute the I/O event and assignment statements of 7. The message rules specify which
PE’s should exchange messages. The contents and types of these messages are also specified.

Consequently, three types of messages are exchanged for the execution of a transition 7"

12



e a-messages are sent from the PE that starts the execution of T' (i.e. PEstart(T)) to the PE’s that
send S-messages (and PE’s that send y-messages and are not in PEsubst(T)). Their reception leads

to the sending of S-messages and/or y-messages. An a-message does not contain any register value.

e [S-messages are sent from PE’s that have registers to be used to execute assignment statements
of §(T), to those PE’s that execute these assignment statements. The latter PE’s form the set
PEsubst(T). Note that for the PE’s that need no register values for the execution of the assignment
statements, S-messages are sent from P Estart(T) for synchronization. The reception of S-messages

leads to the execution of the assignment statements.

e y-messages are sent from the PE’s in PEsubst(T) and PE’s that have registers to be used to
check/execute C(T")/E(T") to PE’s in PEstart(T e e), where T" is a next transition after 7. They
let the PE’s in PEstart(T e o) know the values of registers required for C(T")/E(T") and the timing

for executing the next transition.

Our synthesis method assumes that the Petri net of the service specification is a live and safe free-
choice net[2, 3]. A free-choice net is a sub-class of Petri nets which has simple choice structures. It is
known that a live and safe free-choice net can be decomposed into a set of finite state machines [2, 3]
and this property is used in our algorithm. In addition, we assume that for two transitions 7' and T’ of
Sspec in a choice structure, PEstart(T) = PEstart(T") (i.e. the gates in £(T) and £(T") are allocated
to the same PE). This guarantees that a single PE makes the decision to select the next transition in the
choice structure. Otherwise an agreement would be needed among several PE’s to make this decision.
This would be done by implementing a leader election algorithm as the one shown in [5]. Finally, it is
assumed that for two transitions T" and T" of Sspec that may be executed in parallel, there is no register
that is updated by one and referred or also updated by another. This assumption is used to prevent the
inconsistency that may result in having multiple accesses to the same register. This assumption may also

be relaxed by implementing a mutual exclusion algorithm (see for instance [5]).

13



Action Rules

(Sa1)

(Sa2)

PE,, that has the gate G used in £(T) checks that
(1) the value of C(T) is true,

(2) the execution of the previous transitions of T is completed

(3) an input has been given through G, if £(T') is an input event.
Then PE, executes £(T'). This PE, is denoted PEstart(T).

After (Sa1), each PE (say PE}) executes the subset of the assignment statements of
S(T) that update the registers allocated to PEj. The set of these PE’s is denoted
by PEsubst(T). These assignment statements are executed when the corresponding
(B-messages) are received (see below).

Message Rules

(SMa)

(Smp1)

(Snmp2)

(Smps)

(SM’Yl)

(SMW)

(SM%)

After (Sa1), PEstart(T) only sends a-messages. The PE’s to which a-messages are
sent are determined in (Sarg3) and (Sary3).

Each PE}, € PEsubst(T) must receive at least one S-message from some PE’s (each
called PEj) in order to know the timing to execute S(T"). This message also lets PE,
know the values of registers used in S(T") (see (Sars2))-

For each register Ry, that is used to execute S(T") by PE}, PEj, must receive its value
through a S-message if Ry, is not allocated to PEjy.

Each PE; that sends a -message to PEy, € PEsubst(T) knows the timing to send
the message by receiving an a-message from PEstart(T) unless PE; is PEstart(T).

Each PE,, € PEstart(T e o), where T e o is the set of the next transitions after T,
must receive a y-message from each PEj € PEsubst(T) after (Aas), except where
m = k. This lets PE,, know that the execution of S(T") had been completed on PEj,.

If PEsubst(T) is empty, PE,, must receive at least one y-message from any PE in
order to know that the execution of 7" had been completed. y-messages also let PE,,
know the values of registers used in the pre-conditions and/or events of next transitions

(see (Srr2)-

For each register R, used by PE,, to start the execution of the next transitions of T,
PE,, must receive its value through a v-message if R, is not allocated to PE,,.

Each PE (say PE;) that sends a y-message to PE,, € PEstart(T e o) must be in
PEsubst(T) (see (Sary1)), must receive an a-message from PEstart(T) or must be
PEstart(T), in order to know the timing to send the y-message to PE,,.

Figure 5: Synthesis Rules in Detail
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3.2 Synthesis of Protocol Specifications

Based on the synthesis rules, a set of actions and message exchanges to be executed on each PE is defined
for each transition T' of Sspec. Then these actions and message exchanges are represented, for each
PE, as a set of transitions where two transitions are connected through a place if a temporal ordering
between the transitions is specified in the synthesis rules (e.g. an a-message must be received before
the corresponding [-messages are sent). As a result, for each transition T in Sspec, a set of sub-PNR’s
SPnety(T), ..., SPnet, (T) are produced for the n protocol entities. Afterwards, an intermediate protocol
entity specification of PE; (denoted as Pspec;) is derived by connecting all sub-PNR’s SPnet;(T) in the
same way as the transitions T are connected in Sspec. More specifically, Pspec; is obtained using the net
structure of Sspec, by replacing each T' with the corresponding sub-PNR, SPnet;(T). Finally, a protocol
entity specification of PE; (Pspec;) is derived by removing e-transitions from Pspec;. The removing
technique is based on the well-known technique to remove e-moves in finite automata. In order to apply
this technique to our PNR model containing parallel synchronization, we use the fact that a live and safe
free-choice net can be decomposed into a set of live and safe finite state machines (FSM’s) [2, 3]. The

reader may refer to [28] for the details of the above mentioned steps.

4 Integer Linear Programming Models for Deriving Optimized
Distributed Applications

As shown below (see also [28]), the above synthesis rules do not derive optimized distributed applications.
That is, they do not derive PE’s with minimum communication costs. We consider communication costs
as a primary cost of building distributed applications. Accordingly, in the following two subsections, we
extend our synthesis method [28] with two 0-1 ILP models that allow us to derive optimized applications.
Moreover, in the following section, we present some other reasonable cost criteria that can be used in
the derivation of optimized applications. The first model, called resource-allocation model, determines an

optimal allocation of resources that minimizes communication costs and the second, called fized-allocation
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model, minimizes the communications costs based on a given fixed allocation of resources. The evaluation
of fixed-allocation model consumes less memory resources and requires less computational time than the
variable-allocation model since it takes into account that for a transition t, of Sspec the PE’s that will
execute the substitution statements (i.e. PEsubst;) and the allocation of resources to PE’s are known.
For a given cost function and based on the solution provided by an ILP model, the synthesis algorithm
determines which entitities should send the «, 3, or v messages, execute the substitution statement (for
the resource-allocation model), and when to send these messages. We note that in our previous work
published in [27], we have presented a preliminary version of the resource-allocation model, however, we

did not include any application example nor experimental results.
4.1 An Integer Linear Programming Model for Optimal Resource Allocation

The communication costs (e.g. the number of messages) depend on the allocation of resources amongst
different PE’s. Therefore, we may carefully design this allocation in order to minimize the communication
costs.

As a simple example, let us consider the timing charts in Fig. 6(b). This chart is similar to that in
Fig. 4 obtained when R and R’ are allocated to PE; and PFE,, respectively. If we use another allocation
where both R and R’ are allocated to PFEs, we obtain a different protocol specification whose timing chart
is shown in Fig. 6(c). We note that the allocation of the user gates are usually fixed by the nature of the
application, and therefore cannot be changed freely. These examples show that the resource allocation
affects the communication costs of the protocol specifications and that it is not easy to find an optimal
allocation, given the complex message exchanges between the PE’s.

We formulate this optimal resource-allocation problem as an ILP problem. For this purpose, we
introduce the following 0-1 integer (boolean) variables:

e Each of the following variables represent the fact that a message is sent from one PE to another.

-«

w.q° its value is one iff an a-message is sent from PE,=PEstart(t,) to PE, in the execution
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Service Spec. Pspecl Pspec2 Pspecl Pspec2

‘ true true ‘
true Gin?i
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{R<-R’,
R'<-i} C
Bli
{R<-R
O r< i}
{R<R'} €
?‘/v[R’
true Gout!R,R’ Gout!R,R’
GOUut!R,R’
{1
Gin Gout Gin Gout Gin Gout
(a) Service Specification (b) Protocol Specification. (c) Protocol Specification .
on a Resource Allocation on another Resour ce Allocation

Figure 6: Two Protocol Specifications: they provide the same service as the service specification, however
their resource allocations are different.

of t,; otherwise zero.

50 (Vp.): its value is one iff a B-message (y-message) is sent from PE,, to PE, in the execution

of transition t,; otherwise zero.

= B3 JJBuw] (75 ,[Rw]): its value is one iff the 3- (7-) message sent from PE, to PE, contains the

value of register R,,; otherwise zero.
o ALCp[R,] : its value is one iff register R,, is allocated to PE,; otherwise zero.

e PEsubsty: its value is one iff PE, executes one or more substitution statements of ¢; otherwise

zZero.

Using the above variables, we determine an optimal resource allocation that minimizes the number
of messages exchanged between different PE’s by minimizing the following objective function, subject to

constraints (1) to (13) described below.
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Objective Function:
s 3 (Sai+ DX (505
@ q P

The following constraints are derived from the definition of the variables. According to constraint (1),
if a B-message is sent from PE; to PE; in the execution of ¢, and it contains the value R,,, then this
message should have been sent through a 3-message. Moreover, in order for PE; to send R,,, R, should

be allocated to it. The same reasoning applies to constraint (2).

;‘c,k + ALCj [Rw] - QBi,k[Rw] >0 (1) ’Ylm,m + ALCm[Rw] - 2")/lgc,m[Rw] >0 (2)
According to rule (S 42), each PE that has a register R,, whose value is changed in the set of substitution

statements S(¢,), must be the one that executes this substitution statement.

PEsubsty — ALCy[R,] > 0 (3)

> ALCk[Ry] — PEsubstj; > 0 (4)

The following three constraints correspond to rules (Sarp1), (Sms2), and (Sargs), respectively.

> B7, — PEsubst} >0 (5)
J
> B74[Ri] + ALCk[Ry] > 1 (6)
J
al ;= B3, >0 (7)

The following two constraints correspond to rule (Sps41)

Yie.m — PEsubsty, >0 (8)

> AF + PEsubsts, > 1 (9)
l
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Constraints (10) and (11) correspond to rules (Sps2) and (Sar43), respectively:

Y AR+ ALCy[R.] > 1 (10)
[

o, + PEsubst] —~/,, >0 (11)

Constraints (12) and (13) restrict the number of PE’s that have registers R,, and _R, respectively. The

register _R is used only in PEStarty to save the input variable used in the event expression of ¢, (say i*).

> ALCy[R,] > 1 (12)

ALCy[-R,.i"] = 1if p = u; Otherwise 0 (13)

Note that a general 0-1 ILP problem is known to be a hard problem of exponential complexity, and
therefore a solution to our optimization problem is not readily available for large-scale systems in terms
of the numbers of transition, resources and PE’s. There are some possibilities to tackle this complexity:
(i) We may adopt a simpler model for applications with a given fixed allocation of resources. This is
done in the following subsection in order to reduce computation time and memory resources. (ii) We may
use heuristic algorithms, for instance genetic and simulated annealing algorithms as in [1]. This is part
of our future work. However, it is worth mentioning that we have developed a genetic algorithm for the
following fixed-allocation model and our preliminary experiments show that the algorithm determines a
(near) optimal solution in a reasonable time.

4.2 An Integer Linear Programming Model for a Fixed Allocation of Re-
sources

In some application areas, the allocation of resources to different PE’s is given. Thus, in order to mimimize

communication costs, it is worth to adopt a simpler model than that presented in the previous subsection.
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Figure 7: Two Protocol Specifications: they provide the same service as the service specification, however
their number of messages are different, (a) has optimal and (b) has non-optimal message exchange

This model takes into account that for a transition ¢, of Sspec the PE’s that will execute the substitution
statements (i.e. PEsubsty) and the allocation of resources to PE’s are known.

As described in [28], here we note that even if the allocation of resources to different PE’s is given, the
number of messages exchanged between the entities for the execution of a transition in Sspec may not be
unique because a register may be allocated to more than one PE and several input/register values may be
sent in one message. For example, let us assume that there are eight PE’s as in Fig. 7(a). PEs, PE; and
PEg should change the values of registers R5, Rg and Ry, respectively. However, they do not have the
registers necessary to change these values as PFE,, PE3, PE, and PE5 do. PE, is PEstart(t). Fig. 7(a)
shows the optimal way that uses five messages to send the necessary values to Rs, Rg and R;. However,
there are many ways to send these values, Fig. 7(b) is one of them, and it uses six messages.

We consider the number of messages as a primary cost criteria for distributed systems. Moreover, if
we assume that the size of a message is small, then the overhead for sending it as a packet throug a high-
speed network is high. To reduce this cost, the minimum number of messages exchanged for simulating a

transition ¢, of Sspec for a given resource allocation has to be determined.
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Using the relevant variables defined in the previous subsection, for each transition ¢, of Sspec, we
mimimize the number of messages exchanged between different PE’s for the execution of ¢, by minimizing
the following objective function, subject to constraints (14) to (22) given below.

Objective Function:
Min : Z Qy,q + Z Z (Bp,g + Yp.a)
q P oq

The following constraints are drived from the definition of the variables. According to constraint (14),
if a B-message is sent from PE; to PE; in the execution of ¢, and it contains the value R,,, then this

message should have been sent through a #-message. The same reasoning applies to constraint (15).

Bk — Bjk[Ruw] >0 (14) Yiym — Yiym[Ruw] >0 (15)

The following three constraints correspond to rules (Sarp1), (Samsz2), and (Sargs), respectively.

> Bix>1 (16)
J
> BiklRa] =1 (17)
J
oy — Bjr >0 (18)

The following two constraints correspond to rule (Sasy1)

Vi,m — PEsubsty, > 1 (19)

Z'Yl,m >1 (20)

l

Constraints (21) and (22) correspond to rules (Sas2) and (Sazq3), respectively:
Z’Yl,m[Rz] > 1 (21)
1

Qul — Viym > 0 (22)
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We note that different optimization criteria may be considered by adopting corresponding objective
functions. For example, instead of considering the number of messages, we may also consider the size
and/or the cost of sending messages over particular communication channels. In the following section,
we consider some cost, criteria that could be used in minimizing the communication costs of the derived

protocol entities.

5 Other Cost Criteria

In this section, we incorporate into our resource-allocation model some other cost criteria that could be
adopted during the minimization of the communication costs of the derived protocol specification. One
may select a criterion according to the application area and the underlying network architecture. We note
that all crieteria except the last one, can also be used by the fixed-allocation model since the resource

placement costs are fixed in this model.
5.1 Considering Size of Messages

In most application areas, the size of resources exchanged between different PEs plays an important
factor in determining their communication costs. We let Size[R,] denote the size of resource R, and

reformulate our resource-allocation ILP model objective function as follows.

Min: Y (Z al , +> > ( YR, Y Size[Ry] * (B2, [Ru] + vl”f’q[Rw])>>

5.2 Considering Execution Frequencies of Transitions

In some application areas, the structure of the service specification includes many loops and each loop
includes many transitions. Consequently, in such cases, one might want to consider the frequencies of
transition executions during the protocol derivation. In general, this is a dynamic property of the system,
however, an approximation of the firing frequency may be derived by firing vector analysis or simulation

of Petri nets, which has been investigated extensively [2].
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Let F* denote the (approximate) firing frequency of a transition ¢,. We incorporate F'* into our
resource-allocation ILP model as follows.

Min : ZF””* (Zaﬁ,ﬁZZ( z,q+7$,q)>

q P g
5.3 Considering Channel Costs
For application areas that use many communication channels with different channels costs,we let ChannelCost; ;

denote the cost to send a message from PE, to PE,. Then we incorporate these costs into our resource-

allocation ILP model as follows:
Min : Z g+ Z Z ChannelCost,, , * (B;q + 7Z,q)
x P q

5.4 Considering Resource Placement Costs

In application areas where there are major differences in the costs of placing resources on different phys-
ical locations (PE’s), one might want to consider these differences during protocol derivation. We let
PlaceCosty|Ry] denote the cost of placing resource R,, on PE,, and we formulate our resource-allocation

ILP model objective function as follows:
Min : Z (Z Qg+ Z Z By, + ’y;q)> + Z ZPlaceC’ostp[Rw]
x q P g pow

6 An Application Example and Experimental Results

Protocol synthesis methods have been applied to many applications such as communication protocols, fac-
tory manufacturing systems [15], distributed cooperative work management [14] and so on. In the following
subsection we apply our synthesis method to the distributed development of software We derive for the
specification of this application the corresponding protocol specifications with minimum communication

costs using the different cost criteria presented in the previous section.
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We have developed an automated system to generate for a given specification, the variable allocation)
ILP model and its constraints. Then, we have used the tool 1p_solve[30] on a PC with Athlon 750Hz to
solve the ILP problem and determine the minimum communication costs of the derived PE’s using the

different cost criteria described in Section 5.
6.1 The ISPW-6 Example and its Experimental Results

In this subsection, we apply our synthesis method to the distributed development of software that involves
five engineers (project manager, quality assurance, design, and two software engineers). Each engineer
has his/her own machine connected through a network, and participates in the development through a
gate (interfaces) of this machine, using distributed resources placed on these machines. This distributed
development process includes tasks for scheduling and assigning tasks, design modification, design review,
code modification, test plan modification, modification of unit test packages, unit testing, and progress
monitoring. The engineers cooperate with each other to finish these sub-sequential tasks in a suitable
order. The reader may refer to ISPW-6 Core Problem [29] for a complete description of this process,
which was provided as an example to help the understanding and comparison of various approaches to
process modeling.

Fig. 8 shows a workflow model of the above development process using PNR, where the engineers and
resources needed to accomplish the tasks are indicated. We note that, for convenience, we do not show
the progress monitoring tasks in Fig. 8.

We regard this workflow as a service specification and we derive the corresponding protocol speci-
fications with minimum communication costs using the different cost criteria presented in the previous
section. The specification for each PE in the derived protocol specification will correspond to the workflow
of one engineer. Particularly, we have used our developed automated system and generated from the given
specification the corresponding resource-allocation ILP problem and its constraints. Then, we have used
Ip_solve[30] to solve the problem using the different costs criteria. Table 2 contains the optimal resource

allocation of the given problem and the execution times taken by lp_solve to solve the problem using the
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following cost criteria: (a) the number of messages as in our ILP model of Section 4, (b) the sizes of
resources depicted in Table 3, (¢) the execution frequencies of transitions depicted in Table 4, (d) the
communication channel costs depicted in Table 5, and (e) the resource placement costs depicted in Table
6.

These experimental results show that for various cost criteria, we obtain different optimal allocations.
Moreover, our method can determine optimal resource allocations for various cost criteria in a reasonable

time.

7 Conclusion

In this paper, we have proposed a Petri-net based method for deriving an optimized protocol specification
(distributed application) from a given service specification. In particular, we have presented two integer
linear programming models that derive distributed applications with minimum communication costs.
The first model determines an optimal allocation of resouces that minimizes communication costs and
the second model minimizes the communication costs based on a given fixed allocation of resources.
Furthermore, the models can treat several reasonable cost criteria that could be used in various related
application areas. Specifically, we have considered the following cost criteria:(a) the number of messages
exchanged between different distributed applications, (b) the size of messages, (c) the number of messages
based on frequency of executions,(d) communication channel costs, and (d) cost of resource placement.
An application example is given along with the experimental results.

In general, the solution to our integer linear programming optimization problems is not readily available
for large systems (in terms of the numbers of transition, resources and PE’s). Consequently, we are
developing heuristic algorithms, such as genetic and simulated annealing algorithms, to solve effeciently
the optimization problems. Our preliminary experiments with a genetic algorithm that we have developed
for the fixed-allocation problem show that the algorithm finds (near) optimal solutions in a very reasonable
time. Our future work is to develop an integrated development environment for distributed systems

based on our proposed method, including a tool support for specifying service requirements (service
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PE,ing PE,. PE,.: PE..» PE,. Time (second)
Gate (Fixed) | MNG DE SEI SE2 QA
(a) Rreq Rrvw_sel Rrvw-seQ Rrvw-qa 112
Rdesign Rdcs_sel Rdcs-seZ Rdcs_qa
Rdesign_fb Runittest Rdcs Robject
Rr'uw_de Rtestresult Ralc_qa
Rdcs_de Rals_de
Rcode
Rtest_fb
Rtestplan
(b) Rreq Rrvw_de Rrvw_sel Rrvw-seQ Rtestplan 109
Rdcs_de Rdcs_sel Rdcs_se2 Runittest
Rdesign Rtestresult
Rdesign_fb Rtest_fb
Rals_de Rrvw-qa
Rdcs_qa
Rals_qa
(C) Rreq Rcode Rrvw_de Rrvw_sel Rrvw-seQ Rtestplan 142
Robject Rdcs_de Rdcs_sel Rdcs-seZ Runittest
Rdesign Rtestresult
Rdesign_fb Rtest_fb
Rals_de Rrvw_qa
Rdcs_qa
Rals_qa
Rdcs
(d) Rdcs Rrvw_de Rrvw_sel Rreq Rrvw-qa 135
Rdcs_de Rdcs_sel Rdesign Rdcs_qa
Rdesign_fb Rtestplan
Rrvw-seQ Runittest
Rdcs_se2 Rals_qa
Rcode Rals_de
Rtest_fb
lzobject
Rtestresult
(e) Rreq Rcode Rrvw_de Rrvw_sel Rrvw-seQ Rtestplan 20
Robject Rdcs Rdcs_de Rdcs_sel Rdcs-seZ Runittest
Rdesign Rtestresult
Rdesign_fb Rtest_fb
Rr'uw_qa
Rdcs_qa
Rals_qa
Rals_de

Table 2: Optimal Resource Allocation and Derivation Time Using as Cost Criterion (a) the Number of
Messages, (b) the Size of Message, (c) the Execution Frequencies of Transitions, (d) the Communication
Channel and (e) the Resource Placement Costs
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specifications) through a graphical interface, synthesizing optimized protocol specifications, and generating

Java code from the optimized protocol specifications.
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Rreq Rdesign Rdesign_fb Rrvw_de Rdcs_de Rcode Rtest_fb Rtestplan Rrvw_sel Rdcs_sel
1 10 ) 1 1 30 5 10 1 1
Runittest Rtestresult Rrvw-seZ Rdcs_se2 Rrvw-qa Rdcs_qa Rdcs Robject Rals_qa Rals_de
10 ) b} 1 b} 1 1 20 3 3
Table 3: Sizes of Resources
Fl F2 F3 F4 FS F6 F7 FS F9 FIO Fll F12 F13 F14 F15 F16 F17
1 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1
F18 F19 FZO F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34
1 2 2 1 1 3 3 3 3 3 3 3 1 1 1 1 1

Table 4: Firing Frequencies of Transitions

PE,ing | PEge | PEse1 | PEgen | PEy,
PEong | - 10 5 1 5
PEg4. 10 10 ) 10
PEge1 5 10 - 1 )
PE;., 1 ) 1 - )
PE,, 5 10 5 5 -
Table 5: Channel Costs
Resource | PE;g | PEge | PEge1 | PEgea | PEy,
Ryeq 1 2 2 2 2
Raesign 4 2 3 3 4
Rdesign_fb 4 2 3 3 4
Reode 10 10 30 18 18
Ropject ) 12 15 15 9
Rtestplan 2 2 2 2 1
Runittest 3 3 3 3 1
Rtestresult 3 3 3 3 1
Ricst_so 3 3 3 3 1
Rrvw_de ) 1 ) 5 5
Rdcs_de ) 1 ) ) 5
Rrvw-sel ) 5 1 5 5
Rdcs_sel ) 5 1 5 )
Rrvw-seZ ) ) 5 1 5
Rdcs_seZ ) ) ) 1 5
Rrvw_qa 5 5 5 5 1
Rics_ga ) ) ) ) 1
Rgcs 1 ) ) ) 5
Rals_qa 5 5 5 5 1
Rais_de ) ) ) ) 1

Table 6: Resource Placement Costs
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